
Soft computing, Lecture 2

1

1. INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS

1.1. Artificial intelligence and the machine learning

The term “artificial intelligence” dates back to the mid-1950s, when mathematician John

McCarthy, widely recognized as the father of AI, used it to describe machines that do things

people might call intelligent. He and Marvin Minsky, whose work was just as influential in the AI

field, organized the Dartmouth Summer Research Project on Artificial Intelligence in 1956. A few

years later, with McCarthy on the faculty, MIT founded its Artificial Intelligence Project, later the

AI Lab. It merged with the Laboratory for Computer Science (LCS) in 2003 and was renamed the

Computer Science and Artificial Intelligence Laboratory, or CSAIL.

Now a ubiquitous part of modern society, AI refers to any machine that is able to replicate

human cognitive skills, such as problem solving. Over the second half of the 20th century,

machine learning emerged as a powerful AI approach that allows computers to, as the name

implies, learn from input data without having to be explicitly programmed. Or as formally

described by Tom Mitchell (1998), A computer program is said to learn from experience E with

respect to some task T and some performance measure P, if its performance on T, as measured

by P, improves with experience E.

One technique used in machine learning is a neural network, which draws inspiration

from the biology of the brain, relaying information between layers of so-called artificial neurons.

The very first artificial neural network was created by Minsky as a graduate student in 1951 (see

“Learning Machine, 1951”), but the approach was limited at first, and even Minsky himself soon

turned his focus to other approaches for creating intelligent machines. In recent years, neural

networks have made a comeback, particularly for a form of machine learning called deep

learning, which can use very large, complex neural networks.

https://the-scientist.com/foundations/machine--learning--1951-65792

Soft computing, Lecture 2

2

Figure 1: Artificial Intelligence Versus Neural Networks

For the past few years, deep learning and Artificial Neural Networks (ANNs) gained a lot

of popularity as a machine learning algorithm in a wide variety of fields. These include computer

vision, natural language processing/machine translation, speech processing and generation,

robotics and self-driving cars. Many tasks which were previously reserved exclusively for humans

slowly become automated with ANNs, often with equal or even better performance.

Figure 2: safer self-driving car- source: Tesla’s Q3 2019 Update

1.2. Biological neural network

A neuron (or nerve cell) is a special biological cell that processes information (see Figure

1). It is composed of a cell body, or soma, and two types of out-reaching tree-like branches: the

axon and the dendrites. The cell body has a nucleus that contains information about hereditary

traits and a plasma that holds the molecular equipment for producing material needed by the

Soft computing, Lecture 2

3

neuron. A neuron receives signals (impulses) from other neurons through its dendrites (receivers)

and transmits signals generated by its cell body along the axon (transmitter), which eventually

branches into strands and substrands. At the terminals of these strands are the synapses. A

synapse is an elementary structure and functional unit between two neurons (an axon strand of

one neuron and a dendrite of another), When the impulse reaches the synapse's terminal, certain

chemicals called neurotransmitters are released. The neurotransmitters diffuse across the

synaptic gap, to enhance or inhibit, depending on the type of the synapse, the receptor neuron's

own tendency to emit electrical impulses. The synapse's effectiveness can be adjusted by the

signals passing through it so that the synapses can learn from the activities in which they

participate. This dependence on history acts as a memory, which is possibly responsible for

human memory.

Neurons are massively connected, much more complex and dense than telephone

networks. Each neuron is connected to 103 to 104 other neurons.

Neurons communicate through a very short train of pulses, typically milliseconds in

duration. The message is modulated on the pulse-transmission frequency. This frequency can

vary from a few to several hundred hertz, which is a million times slower than the fastest

switching speed in electronic circuits. However, complex perceptual decisions such as face

recognition are typically made by humans within a few hundred milliseconds. These decisions are

made by a network of neurons whose operational speed is only a few milliseconds. This implies

that the computations cannot take more than about 100 serial stages. In other words, the brain

runs parallel programs that are about 100 steps long for such perceptual tasks. This is known as

the hundred step rule. The same timing considerations show that the amount of information

sent from one neuron to another must be very small (a few bits). This implies that critical

Soft computing, Lecture 2

4

information is not transmitted directly, but captured and distributed in the interconnections-

hence the name, connectionist model, used to describe ANNs.

1.3. Computational models of neurons

McCulloch and Pitts proposed a binary threshold unit as a computational model for an

artificial neuron (see Figure 4).

This mathematical neuron computes a weighted sum of its 𝑛 input signals, 𝑥𝑗 , 𝑗 =

 1,2, . . . , 𝑛 and generates an output of 1 if this sum is above a certain threshold 𝑢. Otherwise, an

output of 0 results. Mathematically

𝑦 = 𝜃 (∑ 𝑤𝑗𝑥𝑗 − 𝑢

𝑛

𝑗=1

),

where 𝜃() is a unit step function at 0, and 𝑤𝑗, is the synapse weight associated with the

𝑗th input. For simplicity of notation, we often consider the threshold 𝑢 as another weight 𝑤0 =

−𝑢 attached to the neuron with a constant input 𝑥0 = 1. Positive weights correspond to

excitatory synapses, while negative weights model inhibitory ones. McCulloch and Pitts proved

that, in principle, suitably chosen weights let a synchronous arrangement of such neurons

perform universal computations. There is a crude analogy here to a biological neuron: wires and

interconnections model axons and dendrites, connection weights represent synapses, and the

threshold function approximates the activity in a soma. The McCulloch and Pitts model, however,

contains a number of simplifying assumptions that do not reflect the true behavior of biological

neurons.

Figure 3: McCulloch-Pitts model of a neuron.

Soft computing, Lecture 2

5

The McCulloch-Pitts neuron has been generalized in many ways. An obvious one is to use

activation functions other than the threshold function, such as piecewise linear, sigmoid, or

Gaussian, as shown in Figure 4. The two most common activation functions are the sigmoid and

hyperbolic tangent activation function (Tanh). sigmoid function is a strictly increasing function

that exhibits smoothness and has the desired asymptotic properties. The standard sigmoid

function is the logistic function, defined by

𝑓(𝑥) =
1

1 + 𝑒−𝑥

Figure 4: Different types of activation functions: (a) threshold, (b) piecewise linear, (c) sigmoid, and (d) Gaussian.

The hyperbolic tangent activation function is the more common of these two, as has a number

range from -1 to 1, compared to the sigmoid function which is only from 0 to 1. The Tanh can be

represented mathematically as:

𝑓(𝑥) =
𝑒2𝑥 − 1

𝑒2𝑥 + 1

Figure 5: The Hyperbolic Tangent Function.

Soft computing, Lecture 2

6

2. ARTIFICIAL NEURAL NETWORK ARCHITECTURES

ANNs can be viewed as weighted directed graphs in which artificial neurons are nodes

and directed edges (with weights) are connections between neuron outputs and neuron inputs.

Based on the connection pattern (architecture), ANNs can be grouped into two categories

(see Figure 6):

 feed-forward networks, in which graphs have no loops

 recurrent (or feedback) networks, in which loops occur because of feedback

connections.

In the most common family of feed-forward networks, called multilayer perceptron,

neurons are organized into layers that have unidirectional connections between them. Figure 6

also shows typical networks for each category.

Different connectivities yield different network behaviors. Generally speaking, feed-

forward networks are static, that is, they produce only one set of output values rather than a

sequence of values from a given input. Feedforward networks are memory-less in the sense that

their response to an input is independent of the previous network state. Recurrent, or feedback,

networks, on the other hand, are dynamic systems. When a new input pattern is presented, the

neuron outputs are computed. Because of the feedback paths, the inputs to each neuron are

then modified, which leads the network to enter a new state.

Different network architectures require appropriate learning algorithms. The next section

provides an overview of learning processes.

Soft computing, Lecture 2

7

Figure 6: A taxonomy of feed-forward and recurrent/feedback network architectures.

3. NEURAL NETWORK LEARNING

The ability to learn is a fundamental trait of intelligence. Although a precise definition of

learning is difficult to formulate, a learning process in the ANN context can be viewed as the

problem of updating network architecture and connection weights so that a network can

efficiently perform a specific task. The network usually must learn the connection weights from

available training patterns. Performance is improved over time by iteratively updating the

weights in the network. ANNs' ability to automatically learn from examples makes them

attractive and exciting. Instead of following a set of rules specified by human experts, ANNs

appear to learn underlying rules (like input-output relationships) from the given collection of

representative examples. This is one of the major advantages of neural networks over traditional

expert systems.

To understand or design a learning process, you must first have a model of the

environment in which a neural network operates, that is, you must know what information is

available to the network. We refer to this model as a learning paradigm. Second, you must

understand how network weights are updated, that is, which learning rules govern the updating

process. A learning algorithm refers to a procedure in which learning rules are used for adjusting

the weights.

There are three main learning paradigms: supervised, unsupervised, and hybrid. In

supervised learning, or learning with a “teacher,” the network is provided with a correct answer

Soft computing, Lecture 2

8

(output) for every input pattern. Weights are determined to allow the network to produce

answers as close as possible to the known correct answers. Reinforcement learning is a variant

of supervised learning in which the network is provided with only a critique on the correctness

of network outputs, not the correct answers themselves. In contrast, unsupervised learning, or

learning without a teacher, does not require a correct answer associated with each input pattern

in the training data set. It explores the underlying structure in the data, or correlations between

patterns in the data, and organizes patterns into categories from these correlations. Hybrid

learning combines supervised and unsupervised learning. Part of the weights are usually

determined through supervised learning, while the others are obtained through unsupervised

learning.

4.1. Hebbian learning

The oldest learning rule is Hebb’s postulate of learning. Hebb based it on the following

observation from neurobiological experiments: If neurons on both sides of a synapse are

activated synchronously and repeatedly, the synapse’s strength is selectively increased.

Mathematically, the Hebbian rule can be described as:

𝑤𝑖𝑗(𝑡 + 1) = 𝑤𝑖𝑗(𝑡) + 𝜂 𝑦𝑗(𝑡) 𝑥𝑖 (𝑡)

where 𝑥𝑖, and 𝑦𝑗, are the output values of neurons 𝑖 and 𝑗, respectively, which are

connected by the synapse 𝑤𝑖𝑗, and 𝜂 is the learning rate. Note that 𝑥𝑖, is the input to the synapse.

An important property of this rule is that learning is done locally, that is, the change in

synapse weight depends only on the activities of the two neurons connected by it.

4.2. ERROR-CORRECTION RULES

In the supervised learning paradigm, the network is given a desired output for each input

pattern. During the learning process, the actual output 𝑦 generated by the network may not

equal the desired output 𝑑. The basic principle of error-correction learning rules is to use the

error signal (𝑑 − 𝑦) to modify the connection weights to gradually reduce this error.

The perceptron learning rule is based on this error-correction principle. A perceptron

consists of a single neuron with adjustable weights, 𝑤𝑗 , 𝑗 = 1,2, . . . , 𝑛, and threshold 𝑢, as shown

in Figure 3. Given an input vector 𝒙 = (𝑥1, 𝑥2, , . . . , 𝑥𝑛)𝑡, the net input to the neuron is

Soft computing, Lecture 2

9

𝑣 = ∑ 𝑤𝑗𝑥𝑗 − 𝑢

𝑛

𝑗=1

The output 𝑦 of the perceptron is + 1 if 𝑣 > 0, and 0 otherwise. In a two-class classification

problem, the perceptron assigns an input pattern to one class if 𝑦 = 1, and to the other class if

𝑦 = 0.

Note that learning occurs only when the perceptron makes an error. Rosenblatt proved

that when training patterns are drawn from two linearly separable classes, the perceptron

learning procedure converges after a finite number of iterations. This is the perceptron

convergence theorem. In practice, you do not know whether the patterns are linearly separable.

Many variations of this learning algorithm have been proposed in the literature. Other activation

functions that lead to different learning characteristics can also be used. However, a single-layer

perceptron can only separate linearly separable patterns as long as a monotonic activation

function is used. The back-propagation learning algorithm is also based on the error-correction

principle.

4.3. BOLTZMAN LEARNING

Boltzmann machines are symmetric recurrent networks consisting of binary units (+ 1 for

“on” and -1 for “off’). By symmetric, we mean that the weight on the connection from unit 𝑖 to

unit 𝑗 is equal to the weight on the connection from unit 𝑗 to unit 𝑖 (𝑤𝑖𝑗 = 𝑤𝑗𝑖). A subset of the

neurons, called visible, interact with the environment; the rest, called hidden, do not.

Soft computing, Lecture 2

10

Each neuron is a stochastic unit that generates an output (or state) according to the

Boltzmann distribution of statistical mechanics. Boltzmann machines operate in two modes:

clamped, in which visible neurons are clamped onto specific states determined by the

environment; and free-running, in which both visible and hidden neurons are allowed to operate

freely.

Boltzmann learning is a stochastic learning rule derived from information-theoretic and

thermodynamic principles. The objective of Boltzmann learning is to adjust the connection

weights so that the states of visible units satisfy a particular desired probability distribution.

According to the Boltzmann learning rule, the change in the connection weight 𝑤𝑖𝑗 is given by

∆𝑤𝑖𝑗 = 𝜂(𝑃𝑖𝑗̅̅ ̅ − 𝑃𝑖𝑗),

where 𝜂 is the learning rate, and 𝑃𝑖𝑗
̅̅ ̅, and 𝑃𝑖𝑗 are the correlations between the states of

units 𝑖 and 𝑗 when the network operates in the clamped mode and free-running mode,

respectively. The values of 𝑃𝑖𝑗
̅̅ ̅, and 𝑃𝑖𝑗, are usually estimated from Monte Carlo experiments,

which are extremely slow.

Boltzmann learning can be viewed as a special case of error-correction learning in which

error is measured not as the direct difference between desired and actual outputs, but as the

difference between the correlations among the outputs of two neurons under clamped and free

running operating conditions.

4.4. COMPETITIVE LEARNING RULES

Unlike Hebbian learning (in which multiple output units can be fired simultaneously),

competitive-learning output units compete among themselves for activation. As a result, only

one output unit is active at any given time. This phenomenon is known as winner-take-all.

Competitive learning has been found to exist in biological neural network.

Competitive learning often clusters or categorizes the input data. Similar patterns are

grouped by the network and represented by a single unit. This grouping is done automatically

based on data correlations.

The simplest competitive learning network consists of a single layer of output units as

shown in Figure 6. Each output unit 𝑖 in the network connects to all the input units (𝑥𝑗’s) via

weights, 𝑤𝑖𝑗, 𝑗 = 1,2, . . . , 𝑛. Each output unit also connects to all other output units via inhibitory

weights but has a self-feedback with an excitatory weight. As a result of competition, only the

unit 𝑖∗ with the largest (or the smallest) net input becomes the winner, that is, 𝐖𝑖
∗. 𝐗 > 𝐖𝑖 . 𝐗, ∀𝑖

Soft computing, Lecture 2

11

or ‖𝐖𝑖
∗ − 𝐗‖ ≤ ‖𝐖𝑖 − 𝐗‖, ∀𝑖. When all the weight vectors are normalized, these two

inequalities are equivalent.

 A simple competitive learning rule can be stated as

∆𝑤𝑖𝑗 = {
𝜂(𝑥𝑗

𝑢 − 𝑤𝑖∗𝑗), 𝑖 = 𝑖∗

0, 𝑖 ≠ 𝑖∗

Note that only the weights of the winner unit get updated. The effect of this learning rule

is to move the stored pattern in the winner unit (weights) a little bit closer to the input pattern.

Figure 7 demonstrates a geometric interpretation of competitive learning. In this example, we

assume that all input vectors have been normalized to have unit length. They are depicted as

black dots in Figure 7. The weight vectors of the three units are randomly initialized. Their initial

and final positions on the sphere after competitive learning are marked as Xs in Figures 7a and

7b, respectively. In Figure 7, each of the three natural groups (clusters) of patterns has been

discovered by an output unit whose weight vector points to the center of gravity of the

discovered group.

Figure 7: An example of competitive learning: (a) before learning; (b) after learning

You can see from the competitive learning rule that the network will not stop learning

(updating weights) unless the learning rate 𝜂 is 0. A particular input pattern can fire different

output units at different iterations during learning. This brings up the stability issue of a learning

Soft computing, Lecture 2

12

system. The system is said to be stable if no pattern in the training data changes its category after

a finite number of learning iterations. One way to achieve stability is to force the learning rate to

decrease gradually as the learning process proceeds towards 0. However, this artificial freezing

of learning causes another problem termed plasticity, which is the ability to adapt to new data.

This is known as Grossberg’s stability-plasticity dilemma in competitive learning.

The most well-known example of competitive learning is vector quantization for data

compression. It has been widely used in speech and image processing for efficient storage,

transmission, and modeling. Its goal is to represent a set or distribution of input vectors with a

relatively small number of prototype vectors (weight vectors), or a codebook. Once a codebook

has been constructed and agreed upon by both the transmitter and the receiver, you need only

transmit or store the index of the corresponding prototype to the input vector. Given an input

vector, its corresponding prototype can be found by searching for the nearest prototype in the

codebook.

References and further reading:

The Scientist Magazine, A Primer: Artificial Intelligence Versus Neural Networks. https://www.the-

scientist.com/magazine-issue/artificial-intelligence-versus-neural-networks-65802

Jain, A. K., Mao, J., & Mohiuddin, K. M. (1996). Artificial neural networks: A

tutorial. Computer, 29(3), 31-44.

