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1. INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS 

1.1. Artificial intelligence and the machine learning 

The term “artificial intelligence” dates back to the mid-1950s, when mathematician John 

McCarthy, widely recognized as the father of AI, used it to describe machines that do things 

people might call intelligent. He and Marvin Minsky, whose work was just as influential in the AI 

field, organized the Dartmouth Summer Research Project on Artificial Intelligence in 1956. A few 

years later, with McCarthy on the faculty, MIT founded its Artificial Intelligence Project, later the 

AI Lab. It merged with the Laboratory for Computer Science (LCS) in 2003 and was renamed the 

Computer Science and Artificial Intelligence Laboratory, or CSAIL. 

Now a ubiquitous part of modern society, AI refers to any machine that is able to replicate 

human cognitive skills, such as problem solving. Over the second half of the 20th century, 

machine learning emerged as a powerful AI approach that allows computers to, as the name 

implies, learn from input data without having to be explicitly programmed. Or as formally 

described by Tom Mitchell (1998), A computer program is said to learn from experience E with 

respect to some task T and some performance measure P, if its performance on T, as measured 

by P, improves with experience E. 

One technique used in machine learning is a neural network, which draws inspiration 

from the biology of the brain, relaying information between layers of so-called artificial neurons. 

The very first artificial neural network was created by Minsky as a graduate student in 1951 (see 

“Learning Machine, 1951”), but the approach was limited at first, and even Minsky himself soon 

turned his focus to other approaches for creating intelligent machines. In recent years, neural 

networks have made a comeback, particularly for a form of machine learning called deep 

learning, which can use very large, complex neural networks. 

 

https://the-scientist.com/foundations/machine--learning--1951-65792
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Figure 1: Artificial Intelligence Versus Neural Networks 

For the past few years, deep learning and Artificial Neural Networks (ANNs) gained a lot 

of popularity as a machine learning algorithm in a wide variety of fields. These include computer 

vision, natural language processing/machine translation, speech processing and generation, 

robotics and self-driving cars. Many tasks which were previously reserved exclusively for humans 

slowly become automated with ANNs, often with equal or even better performance. 

 

Figure 2: safer self-driving car- source: Tesla’s Q3 2019 Update 

1.2. Biological neural network  

A neuron (or nerve cell) is a special biological cell that processes information (see Figure 

1). It is composed of a cell body, or soma, and two types of out-reaching tree-like branches: the 

axon and the dendrites. The cell body has a nucleus that contains information about hereditary 

traits and a plasma that holds the molecular equipment for producing material needed by the 
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neuron. A neuron receives signals (impulses) from other neurons through its dendrites (receivers) 

and transmits signals generated by its cell body along the axon (transmitter), which eventually 

branches into strands and substrands. At the terminals of these strands are the synapses. A 

synapse is an elementary structure and functional unit between two neurons (an axon strand of 

one neuron and a dendrite of another), When the impulse reaches the synapse's terminal, certain 

chemicals called neurotransmitters are released. The neurotransmitters diffuse across the 

synaptic gap, to enhance or inhibit, depending on the type of the synapse, the receptor neuron's 

own tendency to emit electrical impulses. The synapse's effectiveness can be adjusted by the 

signals passing through it so that the synapses can learn from the activities in which they 

participate. This dependence on history acts as a memory, which is possibly responsible for 

human memory. 

 

 

Neurons are massively connected, much more complex and dense than telephone 

networks. Each neuron is connected to 103 to 104 other neurons.  

Neurons communicate through a very short train of pulses, typically milliseconds in 

duration. The message is modulated on the pulse-transmission frequency. This frequency can 

vary from a few to several hundred hertz, which is a million times slower than the fastest 

switching speed in electronic circuits. However, complex perceptual decisions such as face 

recognition are typically made by humans within a few hundred milliseconds. These decisions are 

made by a network of neurons whose operational speed is only a few milliseconds. This implies 

that the computations cannot take more than about 100 serial stages. In other words, the brain 

runs parallel programs that are about 100 steps long for such perceptual tasks. This is known as 

the hundred step rule.  The same timing considerations show that the amount of information 

sent from one neuron to another must be very small (a few bits). This implies that critical 
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information is not transmitted directly, but captured and distributed in the interconnections-

hence the name, connectionist model, used to describe ANNs. 

1.3. Computational models of neurons 

McCulloch and Pitts proposed a binary threshold unit as a computational model for an 

artificial neuron (see Figure 4).  

This mathematical neuron computes a weighted sum of its 𝑛 input signals, 𝑥𝑗 , 𝑗 =

 1,2, . . . , 𝑛 and generates an output of 1 if this sum is above a certain threshold 𝑢. Otherwise, an 

output of 0 results. Mathematically 

𝑦 = 𝜃 (∑ 𝑤𝑗𝑥𝑗 − 𝑢

𝑛

𝑗=1

), 

where 𝜃( ) is a unit step function at 0, and 𝑤𝑗, is the synapse weight associated with the 

𝑗th input. For simplicity of notation, we often consider the threshold 𝑢 as another weight 𝑤0 =

−𝑢 attached to the neuron with a constant input 𝑥0  =  1. Positive weights correspond to 

excitatory synapses, while negative weights model inhibitory ones. McCulloch and Pitts proved 

that, in principle, suitably chosen weights let a synchronous arrangement of such neurons 

perform universal computations. There is a crude analogy here to a biological neuron: wires and 

interconnections model axons and dendrites, connection weights represent synapses, and the 

threshold function approximates the activity in a soma. The McCulloch and Pitts model, however, 

contains a number of simplifying assumptions that do not reflect the true behavior of biological 

neurons. 

 

Figure 3: McCulloch-Pitts model of a neuron. 
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The McCulloch-Pitts neuron has been generalized in many ways. An obvious one is to use 

activation functions other than the threshold function, such as piecewise linear, sigmoid, or 

Gaussian, as shown in Figure 4. The two most common activation functions are the sigmoid and 

hyperbolic tangent activation function (Tanh). sigmoid function is a strictly increasing function 

that exhibits smoothness and has the desired asymptotic properties. The standard sigmoid 

function is the logistic function, defined by 

𝑓(𝑥) =  
1

1 +  𝑒−𝑥
 

 

Figure 4: Different types of activation functions: (a) threshold, (b) piecewise linear, (c) sigmoid, and (d) Gaussian. 

The hyperbolic tangent activation function is the more common of these two, as has a number 

range from -1 to 1, compared to the sigmoid function which is only from 0 to 1. The Tanh can be 

represented mathematically as: 

𝑓(𝑥) =  
𝑒2𝑥 − 1

𝑒2𝑥 + 1
 

 

Figure 5: The Hyperbolic Tangent Function. 
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2. ARTIFICIAL NEURAL NETWORK ARCHITECTURES 

ANNs can be viewed as weighted directed graphs in which artificial neurons are nodes 

and directed edges (with weights) are connections between neuron outputs and neuron inputs. 

Based on the connection pattern (architecture), ANNs can be grouped into two categories 

(see Figure 6):  

 feed-forward networks, in which graphs have no loops 

 recurrent (or feedback) networks, in which loops occur because of feedback 

connections. 

In the most common family of feed-forward networks, called multilayer perceptron, 

neurons are organized into layers that have unidirectional connections between them. Figure 6 

also shows typical networks for each category. 

Different connectivities yield different network behaviors. Generally speaking, feed-

forward networks are static, that is, they produce only one set of output values rather than a 

sequence of values from a given input. Feedforward networks are memory-less in the sense that 

their response to an input is independent of the previous network state. Recurrent, or feedback, 

networks, on the other hand, are dynamic systems. When a new input pattern is presented, the 

neuron outputs are computed. Because of the feedback paths, the inputs to each neuron are 

then modified, which leads the network to enter a new state. 

Different network architectures require appropriate learning algorithms. The next section 

provides an overview of learning processes. 
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Figure 6:  A taxonomy of feed-forward and recurrent/feedback network architectures. 

 

3. NEURAL NETWORK LEARNING 

The ability to learn is a fundamental trait of intelligence. Although a precise definition of 

learning is difficult to formulate, a learning process in the ANN context can be viewed as the 

problem of updating network architecture and connection weights so that a network can 

efficiently perform a specific task. The network usually must learn the connection weights from 

available training patterns. Performance is improved over time by iteratively updating the 

weights in the network. ANNs' ability to automatically learn from examples makes them 

attractive and exciting. Instead of following a set of rules specified by human experts, ANNs 

appear to learn underlying rules (like input-output relationships) from the given collection of 

representative examples. This is one of the major advantages of neural networks over traditional 

expert systems. 

To understand or design a learning process, you must first have a model of the 

environment in which a neural network operates, that is, you must know what information is 

available to the network. We refer to this model as a learning paradigm. Second, you must 

understand how network weights are updated, that is, which learning rules govern the updating 

process. A learning algorithm refers to a procedure in which learning rules are used for adjusting 

the weights. 

There are three main learning paradigms: supervised, unsupervised, and hybrid. In 

supervised learning, or learning with a “teacher,” the network is provided with a correct answer 
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(output) for every input pattern. Weights are determined to allow the network to produce 

answers as close as possible to the known correct answers. Reinforcement learning is a variant 

of supervised learning in which the network is provided with only a critique on the correctness 

of network outputs, not the correct answers themselves. In contrast, unsupervised learning, or 

learning without a teacher, does not require a correct answer associated with each input pattern 

in the training data set. It explores the underlying structure in the data, or correlations between 

patterns in the data, and organizes patterns into categories from these correlations. Hybrid 

learning combines supervised and unsupervised learning. Part of the weights are usually 

determined through supervised learning, while the others are obtained through unsupervised 

learning. 

4.1. Hebbian learning 

The oldest learning rule is Hebb’s postulate of learning. Hebb based it on the following 

observation from neurobiological experiments: If neurons on both sides of a synapse are 

activated synchronously and repeatedly, the synapse’s strength is selectively increased. 

Mathematically, the Hebbian rule can be described as: 

𝑤𝑖𝑗(𝑡 + 1) =  𝑤𝑖𝑗(𝑡) +  𝜂 𝑦𝑗(𝑡) 𝑥𝑖 (𝑡) 

where 𝑥𝑖, and 𝑦𝑗, are the output values of neurons 𝑖 and 𝑗, respectively, which are 

connected by the synapse 𝑤𝑖𝑗, and 𝜂 is the learning rate. Note that 𝑥𝑖, is the input to the synapse. 

An important property of this rule is that learning is done locally, that is, the change in 

synapse weight depends only on the activities of the two neurons connected by it. 

 

4.2. ERROR-CORRECTION RULES 

In the supervised learning paradigm, the network is given a desired output for each input 

pattern. During the learning process, the actual output 𝑦 generated by the network may not 

equal the desired output 𝑑. The basic principle of error-correction learning rules is to use the 

error signal (𝑑 − 𝑦) to modify the connection weights to gradually reduce this error. 

The perceptron learning rule is based on this error-correction principle. A perceptron 

consists of a single neuron with adjustable weights, 𝑤𝑗 , 𝑗 =  1,2, . . . , 𝑛, and threshold 𝑢, as shown 

in Figure 3. Given an input vector 𝒙 =  (𝑥1, 𝑥2, , . . . , 𝑥𝑛)𝑡, the net input to the neuron is 
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𝑣 =  ∑ 𝑤𝑗𝑥𝑗 − 𝑢

𝑛

𝑗=1

 

The output 𝑦 of the perceptron is + 1 if 𝑣 > 0, and 0 otherwise. In a two-class classification 

problem, the perceptron assigns an input pattern to one class if 𝑦 =  1, and to the other class if 

𝑦 = 0.  

Note that learning occurs only when the perceptron makes an error. Rosenblatt proved 

that when training patterns are drawn from two linearly separable classes, the perceptron 

learning procedure converges after a finite number of iterations. This is the perceptron 

convergence theorem. In practice, you do not know whether the patterns are linearly separable. 

Many variations of this learning algorithm have been proposed in the literature. Other activation 

functions that lead to different learning characteristics can also be used. However, a single-layer 

perceptron can only separate linearly separable patterns as long as a monotonic activation 

function is used. The back-propagation learning algorithm is also based on the error-correction 

principle. 

 

 

 

4.3. BOLTZMAN LEARNING 

Boltzmann machines are symmetric recurrent networks consisting of binary units (+ 1 for 

“on” and -1 for “off’). By symmetric, we mean that the weight on the connection from unit 𝑖 to 

unit 𝑗 is equal to the weight on the connection from unit 𝑗 to unit 𝑖 (𝑤𝑖𝑗  =  𝑤𝑗𝑖). A subset of the 

neurons, called visible, interact with the environment; the rest, called hidden, do not. 
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Each neuron is a stochastic unit that generates an output (or state) according to the 

Boltzmann distribution of statistical mechanics. Boltzmann machines operate in two modes: 

clamped, in which visible neurons are clamped onto specific states determined by the 

environment; and free-running, in which both visible and hidden neurons are allowed to operate 

freely. 

Boltzmann learning is a stochastic learning rule derived from information-theoretic and 

thermodynamic principles. The objective of Boltzmann learning is to adjust the connection 

weights so that the states of visible units satisfy a particular desired probability distribution. 

According to the Boltzmann learning rule, the change in the connection weight 𝑤𝑖𝑗 is given by 

∆𝑤𝑖𝑗 =  𝜂(𝑃𝑖𝑗̅̅ ̅ − 𝑃𝑖𝑗), 

where 𝜂 is the learning rate, and 𝑃𝑖𝑗
̅̅ ̅, and 𝑃𝑖𝑗 are the correlations between the states of 

units 𝑖 and 𝑗 when the network operates in the clamped mode and free-running mode, 

respectively. The values of 𝑃𝑖𝑗
̅̅ ̅, and 𝑃𝑖𝑗, are usually estimated from Monte Carlo experiments, 

which are extremely slow. 

Boltzmann learning can be viewed as a special case of error-correction learning in which 

error is measured not as the direct difference between desired and actual outputs, but as the 

difference between the correlations among the outputs of two neurons under clamped and free 

running operating conditions. 

4.4. COMPETITIVE LEARNING RULES 

Unlike Hebbian learning (in which multiple output units can be fired simultaneously), 

competitive-learning output units compete among themselves for activation. As a result, only 

one output unit is active at any given time. This phenomenon is known as winner-take-all. 

Competitive learning has been found to exist in biological neural network. 

Competitive learning often clusters or categorizes the input data. Similar patterns are 

grouped by the network and represented by a single unit. This grouping is done automatically 

based on data correlations. 

The simplest competitive learning network consists of a single layer of output units as 

shown in Figure 6. Each output unit 𝑖 in the network connects to all the input units (𝑥𝑗’s) via 

weights, 𝑤𝑖𝑗, 𝑗 =  1,2, . . . , 𝑛. Each output unit also connects to all other output units via inhibitory 

weights but has a self-feedback with an excitatory weight. As a result of competition, only the 

unit 𝑖∗ with the largest (or the smallest) net input becomes the winner, that is, 𝐖𝑖
∗. 𝐗 > 𝐖𝑖 . 𝐗, ∀𝑖 
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or ‖𝐖𝑖
∗ − 𝐗‖ ≤ ‖𝐖𝑖 − 𝐗‖, ∀𝑖. When all the weight vectors are normalized, these two 

inequalities are equivalent. 

 A simple competitive learning rule can be stated as 

∆𝑤𝑖𝑗 = {
𝜂(𝑥𝑗

𝑢 − 𝑤𝑖∗𝑗),    𝑖 = 𝑖∗

0,                          𝑖 ≠ 𝑖∗
 

Note that only the weights of the winner unit get updated. The effect of this learning rule 

is to move the stored pattern in the winner unit (weights) a little bit closer to the input pattern. 

Figure 7 demonstrates a geometric interpretation of competitive learning. In this example, we 

assume that all input vectors have been normalized to have unit length. They are depicted as 

black dots in Figure 7. The weight vectors of the three units are randomly initialized. Their initial 

and final positions on the sphere after competitive learning are marked as Xs in Figures 7a and 

7b, respectively. In Figure 7, each of the three natural groups (clusters) of patterns has been 

discovered by an output unit whose weight vector points to the center of gravity of the 

discovered group. 

 

 

Figure 7: An example of competitive learning: (a) before learning; (b) after learning 

 

You can see from the competitive learning rule that the network will not stop learning 

(updating weights) unless the learning rate 𝜂 is 0. A particular input pattern can fire different 

output units at different iterations during learning. This brings up the stability issue of a learning 
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system. The system is said to be stable if no pattern in the training data changes its category after 

a finite number of learning iterations. One way to achieve stability is to force the learning rate to 

decrease gradually as the learning process proceeds towards 0. However, this artificial freezing 

of learning causes another problem termed plasticity, which is the ability to adapt to new data. 

This is known as Grossberg’s stability-plasticity dilemma in competitive learning. 

The most well-known example of competitive learning is vector quantization for data 

compression. It has been widely used in speech and image processing for efficient storage, 

transmission, and modeling. Its goal is to represent a set or distribution of input vectors with a 

relatively small number of prototype vectors (weight vectors), or a codebook. Once a codebook 

has been constructed and agreed upon by both the transmitter and the receiver, you need only 

transmit or store the index of the corresponding prototype to the input vector. Given an input 

vector, its corresponding prototype can be found by searching for the nearest prototype in the 

codebook. 
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